MEMBER LOGIN

NEWS

Electronics Industry News

15 May 2018

Srikanth Rengarajan

Companies who previously designed all forms of consumer electronic devices such as smartphones and digital cameras, are steering themselves to chip companies driving the autonomous vehicle trend.

Every engineer I know tracks NASA, its space programs and aeronautics and aerospace research, and secretly longs to work on mission-critical systems.

He may have found one. The latest mission-critical challenge is automotive electronics. Of course, automotive electronics has irresistible appeal. Engineers who previously designed all forms of consumer electronic devices such as smart phones and digital cameras, are steering themselves to semiconductor companies driving the autonomous vehicle trend. It’s an exciting new field filled with enormous promise and gigantic challenges suitable for clever, inquisitive engineers.

What engineers moving into this area don’t realize is that while their skills are transferable, they need to develop a whole new set of other skills. A specialized skillset is nothing new. Mission-critical systems engineers have long grappled with verifiable functional safety and reliability of their designs, something a smart phone designer wouldn’t prioritize. He or she would have a specialized skillset for managing the multi-app congestion of a smart phone.

The automotive sector, piloted in large part by the explosive growth of Advanced Driver Assistance Systems (ADAS), is going through a particularly critical phase of defining a safety process for a smarter and safer driving experience. That means an understanding of the ISO 26262 standard is critical, for example. It mandates traceable and documented design and verification methodologies backed up by quantitative measures of failure rates of the underlying hardware. For an engineer in automotive electronics, mastery of the standard and functional safety and the tool solutions is a must.

Design tool providers offer a variety of safety analysis and hardening techniques to solve automotive functional safety. Some support traceability and related front-end flows, while others improve their simulation capabilities for “fault-campaign” methodologies. Meanwhile, a few companies offer custom circuit intellectual property (IP) and techniques so designs meet the automotive safety (ASIL) criteria. All are good efforts but makeshift. Instead, an automated end-to-end flow to take the guesswork out of functional safety is what a mission-critical systems engineer needs. A design should be able to go from the safety requirements analysis through functional analysis, hardening and fault-injection campaign to generate an auditable and verifiable collateral that enables the system to obtain the required safety Integrity certification level.

Consider, for example, the real-world example of an Asian electronics major whose CMOS imaging modules are well known for providing the stunning pictures in some of the leading smartphone brands in the world today. While the camera module, with its 16K+ resolution, HDR-support, low-light capabilities and MIPI-CSI3, is an impressive feat, deploying that technology into a car-vision system while meeting the required ASIL B or C rating poses a few challenges.

Defined as the “Absence of unreasonable risk due to hazardscaused by malfunctioning behavior of Electrical/Electronic systems,” functional safety is embodied in 11 separate volumes in the ISO 26262 specification covering the lifecycle of automotive electronics. The engineer is expected to retool his or her process flow to demonstrate resilience of the design to systematic faults. For probabilistic random failures, the standard specifies precise metrics that form the basis for the all-important ASIL classifications. Here is where, a tool-based approach returns dividends in the form of repeatable and demonstrable results.

Step one is to evaluate legacy design from a safety perspective. The goal is to meet maximum failure rates (FITs) allowed for the design’s ASIL target and the minimum level of coverage against random failures mandated by the standard. Arriving at these numbers is a combination of design knowledge, failure-rate information for process and packaging combined with architectural use-case input.

Gap analysis forms the basis for the next stage, safety hardening. Sensor control inputs, algorithmic stages or even the CSI module controller may be subject to safety mechanism oversight. Simple hardware options include adding error-correcting codes or parity bits. More complex mechanisms like duplication of entire portions of logic with comparison logic, watchdog timers for runway code or thresholding algorithms are tricks of the safety trade that a transitioning engineer is expected to master. Hand optimizations are possible but a tool-driven addition of safety mechanism is an increasingly popular trend in the automotive industry.

The final press on the accelerator is to demonstrate the resilience of the sensor module to random failures, typically done through injecting faults into critical portions of the design using a fault injection tool. Multiple options are on the market but scalability and ease of use persist. While functional verification deals with exposing structural design flaws, safety verification takes the design and injects multiple faults at each safety-critical node, exploding the verification state-space by orders of magnitude. Innovative fault propagation tools are coming online that solve this problem. Add design-centric challenges such as requirements tracking, training and qualification of engineers, tools and designs and process management as well.

A solid understanding of tool-driven safety will go a long way toward easing the transition of a newly minted safety engineer from a non-mission critical systems application segment.

Welcome to automotive electronics, this era’s mission-critical challenge!

– Srikanth Rengarajan is vice president of products and business development at Austemper Design Systems of Austin, Texas, provider of comprehensive functional safety solutions for mission-critical systems. Most recently, he worked at Broadcom leading engineering efforts responsible for security and functional safety solutions for the connected vehicle, serving as an evangelist for emerging vehicular standards to support automotive gateways, advanced driver-assistance systems (ADAS) and telematics.

Trump administration will allow AI to ‘freely develop’ in U.S.: official

David Shepardson – Reuters

The Trump administration will not stand in the way of the development of artificial intelligence in the United States, a top official said on Thursday, while acknowledging that the burgeoning technology will displace some jobs.

At a White House summit that included companies like Alphabet Inc’s Google, Facebook Inc and Amazon.com Inc, technology policy advisor Michael Kratsios said the administration of President Donald Trump did not want to dictate “what is researched and developed.”

“To the greatest degree possible, we will allow scientists and technologists to freely develop their next great inventions right here in the United States,” he said, according to a copy of his remarks provided by the White House.

AI and deep machine learning raise ethical concerns about control, privacy, cybersecurity, and the future of work, companies and experts say.

Kratsios acknowledged that “to a certain degree, job displacement is inevitable.”He added: “But we can’t sit idle, hoping eventually the market will sort it out. We must do what Americans have always done: adapt.”

The White House, which has previously clashed with scientists over issues such as climate change, conservation and budget cuts, said it would create a new committee on AI. It will be comprised of the most senior research and development officials across the U.S government, tasked with looking at R&D priorities and better coordinating federal investments.

“We cannot be passive. To realize the full potential of AI for the American people, it will require the combined efforts of industry, academia, and government,” Kratsios said.

“In the private sector, we will not dictate what is researched and developed. Instead we will offer resources and the freedom to explore,” he added.

Intel Corp chief executive Brian Krzanich, who attended the summit, said in a blog post that “without an AI strategy of its own, the world’s technology leader risks falling behind.”

AI is already being used in a number of fields. For instance, the National Institute of Health is exploring ways machine learning can improve cancer detections and treatment, while the General Services Administration is using AI to reduce the need for federal auditors, the White House said.

Among more than 30 major companies attending included officials from Ford Motor Co, Boeing Co, Mastercard Inc and Microsoft Corp.

The Pentagon and various U.S. departments took part, along with senior White House officials including Jared Kushner and Andrew Bremberg, who heads the Domestic Policy Council.

Related Stories

EIPC Events view all events

Publications view all publications

  • Proceedings EIPC 50th Anniversary Conference Dusseldorf

    By KWestenberg@eipc.org

    Proceedings 50th Anniversary conference 2018

  • WECC Report 2016

    By KWestenberg@eipc.org

    WECC Global PCB Production Report For 2016 FREE of charge EIPC membership service A Product of the Partnership among the WECC Member Associations on Behalf of their Members in the Electronic Circuits Industry Worldwide

Industry Directory view directory

  • Cicor Group

    www.cicor.com

    Cicor is a globally active group of leading companies in the electronics industry. The group’s companies provide complete outsourcing services and a broad range of technologies for the manufacture of highly complex PCBs, 3D-MID solutions, hybrids circuits, electronic modules, plastic injection molding and box-building.

  • Isola Group

    www.isola-group.com

    Corporate Responsibility. The responsible stewardship of the environment and sustainable business practices is important to long-term success. Committed to operating our business in a manner that creates better social, economic and environmental outcomes for all those involved in the electronics industry.

SITEMAP FEEDBACK

Please provide some more details

FIND OUT MORE

Please login or register

Layer-70

EIPC membership has many advantages, both financially and in services. Such as:

REGISTER NOW

You must be a member to view this content

Layer-70

EIPC membership has many advantages, both financially and in services. Such as:

REGISTER NOW

Please Login / Register

IM NOT REGISTERD TO EIPC
IM REGISTERD TO EIPC

Please provide some more details

Please provide some more details

Thank you!

An EIPC staff member will contact you soon to arrange payment.

Please fill in the form

EIPC will send an invoice to you through email and discuss your yearly fees.